Low Carbon Fuel Standard Policy and Regulatory Development Working Group Meeting

November 16, 2007

California Environmental Protection Agency

Tentative Schedule

0	Task Name				1,'0					v 18	· .			
			_	М	T	N .	T F	S	S	M [1	T V	V T	F	S
	WG3 Session 1: Nov. 16, 2007							7						
	Scope of LCFS													
	Diesel fuel													
	Drive train efficiency adjustment factor													
	Baseline													
	Targets													
	Upstream emission (crude oil)													
	Banking and trading of credits													
Took N				er 1	16,'	07				ec 2	, rc	77		
Task Name		s	_		<u> </u>		TF	T S				W i	T F	:
⊡ W(G3 Session 2: Dec. 20, 2007													
	Land use change													
	Default values													
	Boundaries and compliance paths													
	Dealing with uncertainty in lifecycle analysis													
	Point of regulation													
	Compliance, certification, auditing, and penalties													

Tentative Schedule (con't)

Task Name				Jar	n 1	3,	'0	8					Ja	n 2	20,	'08	3				
		S		S	М	T	ין ז	W	T	F	1	S	S	М	T	٠ <u>۱</u>	N	Т	F	S	
WG3 Session 3: Jan.17, 2008								5	7												
Interaction with AB1493, AB32, and other policy instruments	β.																				
Upstream emissions (refineries)																					
Innovation credits, CCS, offsets, and opt-ins																					
Environmental justice and sustainability																					
Cost analysis																					
							7 1	00					Ea	de 1	24	101	0				
Task Name	т	F	s		_) 17 М I	<u> </u>		/ T	F	FI	s		-	24, T			т	F	S	-
WG3 Session 4: Feb. 21, 2008			-					1	-				_								
Additional topics and program review																					
Stakeholder suggested topics								I	₹	P											
Infrastructure, biofuel availability, and distribution																					
Technology timing																					

Agenda

WG3: Session 1 list of policy issues

- 1. Scope of standard
- 2. Diesel fuel and drivetrain efficiency adjustment factor
- 3. Upstream emission crude oil
- 4. Baseline
- 5. Targets
- 6. Banking and trading of credits
- Stakeholder presentations
- Future meeting dates

1. Scope of LCFS

1. Scope of LCFS

Option 1 (UC Recommendation):

Apply to all gasoline and diesel used for transportation in CA; non-liquid fuels (electricity, natural gas, propane, and hydrogen) to voluntarily opt-in; exclude aviation and bunker fuel

- Advantages:
 - Electricity, CNG, LPG, and H₂ can generate credits
 - Electricity: Provide time for developing learnings
- Disadvantages:
 - Difficulty to distinguish electricity used for transportation from other uses; potential overlap with other policies

1.Scope of LCFS

Option 2 (Staff Recommendation):

Apply to all gasoline, diesel, natural gas, propane, and electricity; hydrogen opt-in; exclude aviation and bunker fuel

Advantages:

- CNG and LPG fleets are in place
- Electricity and hydrogen can help generate credits

Disadvantages:

- Similar problems with electricity as Option 1

1. Scope of LCFS

Option 3:

LCFS apply to all fuels in CA used for transportation; exclude aviation and bunker fuel

- Advantages:
 - All fuel-vehicle pathways used needed to achieve 2020 target
 - Electricity and hydrogen can generate significant credits
- Disadvantages:
 - Large scope may be challenging to administrate
 - Inclusion of electricity may create the complexity of overlapping with other policies - double counting

1. Scope of LCFS

Summary:

Option 1 (UC Recommendation):

 Apply to all gasoline and diesel used for transportation in CA; non-liquid fuels (electricity, natural gas, propane, and hydrogen) to voluntarily opt-in; exclude aviation and bunker fuel

Option 2 (Staff Recommendation):

 Apply to all gasoline, diesel, natural gas, propane, and electricity; hydrogen opt-in; exclude aviation and bunker fuel

Option 3:

 LCFS apply to <u>all fuels</u> in CA used for transportation, excluding aviation and bunker fuel

2. Diesel Fuel and Drivetrain Efficiency Adjustment Factor

2. Diesel Fuel and Drivetrain Efficiency Adjustment Factor

Option 1:

Ignore differences in efficiencies between gasoline and diesel drivetrains

- a) Pool diesel and gasoline to create single AFCI baseline of 92 gCO₂e/MJ (and a single target)
 - **Advantages**: Would encourage the sales of diesel fuel and vehicles
 - **Disadvantages**: Potential higher local diesel-related air pollution and effects, environmental justice impacts
- b) (Staff Recommendation): Treat gasoline and diesel separately with 2 separate baselines and targets carbon intensity of 10% reduction each
 - <u>Advantage</u>: Avoid the problem of expected increases in diesel fuel sales and diesel related effects; promote development of alternative fuels; no overlap with AB1493
 - **Disadvantage:** Added complexity, reduce flexibility

2. Diesel Fuel and Drivetrain Efficiency Adjustment Factor Option 2 (UC Recommendation):

Adjust diesel's carbon intensity using an adjustment factor to reflect drivetrain efficiency differences

a) Treat all diesel fuel sales the same and apply the same diesel adjustment factor

- <u>Advantages</u>: Appropriately reflect differences between light duty vehicles powered by gasoline or diesel
- Disadvantages: Lead to problems of allowing compliance through increased sales of heavy duty diesel fuels; double credit used for AB 1493 compliance; issues of changes in future efficiencies

b) Treat heavy and light duty diesel differently:

- Heavy duty diesel: un-adjusted AFCI of 91 gCO₂e/MJ
- Light duty diesel: adjusted AFCI of 71 gCO₂e/MJ)
 - <u>Advantages</u>: Retain incentive to displace gasoline use with light duty diesel
 - **Disadvantages:** Distinguishing between light and heavy duty diesel sales will be challenging; AB 1493 issues

2. Diesel Fuel and Drivetrain Efficiency Adjustment Factor Option 3 (UC Recommendation):

Target gasoline only; diesel and other fuels opt-in; increase the AFCI intensity target for gasoline to above 10% (target ~12.4%)

Advantages:

- Simplicity
- At 12.4% gasoline AFCI target for gasoline, there could be incentive to reduce the carbon content of other fuels

Disadvantages:

- Diesel and other petroleum fuels have no target carbon intensity; potential to reduce innovation for other fuels

2. Diesel Fuel: Summary

Option 1:

- Ignore differences in efficiencies between gasoline and diesel drivetrains
 - a) Single AFCI baseline of 92 gCO2e/MJ
 - b) (Staff Recommendation): Separately treat gasoline and diesel; 10% reduction each

Option 2 (UC Recommendation):

- Adjust diesel's carbon intensity using an adjustment factor to reflect drivetrain efficiency differences
 - a) Treat all diesel fuel sales the same and apply adjustment factor
 - b) Treat heavy and light duty diesel differently: $HDV= 91 \text{ gCO}_2 \text{e/MJ}, LDV= 71 \text{ gCO}_2 \text{e/MJ}$

Option 3 (UC Recommendation):

 Use gasoline sales as compliance tool, with diesel opt-in; increase AFCI intensity target for gasoline to ~12.4%

Option 1:

Using a fixed, average value across <u>all</u> crude oil types

- Advantages:
 - Fixed upstream value is much simpler
 - May reduce rationalization
- Disadvantages:
 - Less accurate accounting
 - Ignore carbon footprint of heavier crudes
 - No incentive for innovations
 - Will need to consider existing and future crude mix

Option 2. (UC Recommendation):

- For each type of crude, conduct full GHG lifecycle analysis
 - Categorize fuel inputs and conduct full LCA
 - Default values could be set for gasoline from conventional crude, heavy oil, tar sands, coal

Advantages:

- More accurately assess the total emission impacts of crudes
- Create additional incentives to monitor and reduce GHG emissions through credit for over-compliance
- Use conventional crude as baseline, encourage opt-ins for firms that can demonstrate better values
- Disadvantages:
 - Promote rationalization and related increases in GHG emissions with higher costs
 - More calculation intensive; potential uncertainties

Option 3: (Staff Recommendation):

Using a fixed, average value for conventional crude oil; non-conventional heavy crudes (tar sand, oil shale, coal to liquid, gas to liquid, other heavy oils) treated separately

Advantages:

- Retains simplicity of Option 1
- Account for carbon footprint of conventional heavier crude oil
- Reduced rationalization for conventional crudes
- Disadvantages:
 - May promote rationalization for un-conventional crudes

Summary:

Option 1:

- Using a fixed, average value across <u>all</u> crude oil types
 Option 2. (UC Recommendation):
- For each type of crude, conduct full GHG lifecycle analysis

Option 3: (Staff Recommendation):

 Using a fixed, average value for conventional crude oil; non-conventional heavy crudes (tar sand, oil shale, coal to liquid, gas to liquid, other heavy oils) treated separately

Option 1 (Staff Recommendation):

A uniform state-wide baseline should be applied; baseline year is the most recent year for which data are available before the LCFS was announced; use 2006 data

Advantages:

A single value is easier to develop and maintain; 2006 data are available

Disadvantages:

- A single state-wide baseline is harder for some regulated entities to meet than others
- Wider range of compliance costs for different firms

Option 2:

Firm specific or facility specific carbon intensity baseline

- Advantages:
 - Reduce differences associated with different firms meeting a single baseline
- Disadvantages:
 - Early GHG emission reductions penalized; signal to firms anticipating possible future regulation not to risk good environmental behavior
 - Complexity in defining individual baselines
 - Firm-level targets may not necessarily result in 10% reduction in total carbon intensity

Summary:

Option 1 (Staff Recommendation):

A uniform state-wide baseline should be applied; baseline year is the most recent year for which data are available before the LCFS was announced; use 2006 data

Option 2:

 Firm specific or facility specific carbon intensity baseline

Option 1 (UC Recommendation):

Provider of transportation fuels regulated by or participating in LCFS should be held to the same standard; target value for transportation fuels = $83 \text{ CO}_2 \text{e/MJ}^*$ in 2020

- Advantages:
 - Single target accurately reflects saving in carbon intensity when switching fuels
- Disadvantages:
 - Reduce technology innovations for fuels that already meet or exceed target; issues of diesel

Option 2:

Obtain 10% reduction for each fuel

Advantages:

- Reduction in each fuel could promote technology innovations for each fuel and reduce carbon intensities across all fuels
- Disadvantages:
 - Does not accurately reflect inherent reduction in carbon intensity by some fuels
 - Inhibit promotion of cleaner technologies

Option 3 (Staff Recommendation):

10% reduction for gasoline and diesel; non-gasoline fuels (i.e. CNG, LNG, electricity, others) will be compared to gasoline; compliance is met and credit will be awarded for reductions beyond 10% reduction relative to gasoline

- Advantages:
 - Promotes use of alternative/low carbon density fuels
 - Stimulate technological innovation
- Disadvantages:
 - Individual considerations needed for non-gasoline fuels
 - Administratively more challenging than option 1

<u>Summary:</u>

Option 1 (UC Recommendation):

 Provider of transportation fuels regulated by or participating in LCFS should be held to the same standard; target value for all transportation fuel = 83 CO₂e/MJ* in 2020

Option 2:

Obtain 10% reduction for each fuel or firm

Option 3 (Staff Recommendation):

 10% reduction for gasoline and diesel; non-gasoline fuels (i.e. CNG, LNG, electricity, others) will be compared to gasoline; compliance is met and credit will be awarded for reductions beyond 10% reduction relative to gasoline

Option 1: (UC Recommendation):

No limit on the ability of any legal entity to trade or bank LCFS credits; borrowing not allowed; not allowed for AB32 compliance; regulators serve as record keepers only; buyers and seller do not communicate price of allowance to the regulators; allow voluntary emissions reductions by retiring the credit

- Advantages:
 - Trading and banking of credits are important LCFS design elements
- Disadvantages:
 - Potential for errors, disputes, and fraud in their handling is possible
 - Allowance market are not regulated by the securities or commodities commissions

Option 2 (Staff Recommendation):

Similar to Option 1 but allow export of LCFS credit to AB32 but not vice versa

- Advantages:
 - Allows innovation and multiple markets for resultant credits
 - All generated credits will be used
 - Increases potential for technological innovation
- Disadvantages:
 - Smaller pool of LCFS credits

Summary:

Option 1: (UC Recommendation):

 No limit on the ability of any legal entity to trade or bank LCFS credits; borrowing not allowed; not allowed for AB32 compliance; regulators serve as record keepers only; buyers and seller do not communicate price of allowance to the regulators; allow voluntary emissions reductions by retiring the credit

Option 2 (Staff Recommendation):

 Similar to Option 1 but allow export of LCFS credit to AB32 but not vice versa

Tentative Future Meetings

Proposed future meeting dates:

 December 20, 2007 (Thursday)
 January 17, 2008 (Thursday)
 February 21, 2008 (Thursday)
 All meetings located in CR550 at ARB

 Additional meeting information TBD

Thank You

Christina Zhang-Tillman
 Phone: (916) 324-0340
 Email: czhangti@arb.ca.gov

 Visit our website at: http://www.arb.ca.gov/fuels/lcfs/lcfs.htm