Low Carbon Fuel Standard Policy and Regulatory Development Working Group 3 Meeting

December 20, 2007

California Environmental Protection Agency

Summary of Staff Recommendations from Previous Meeting

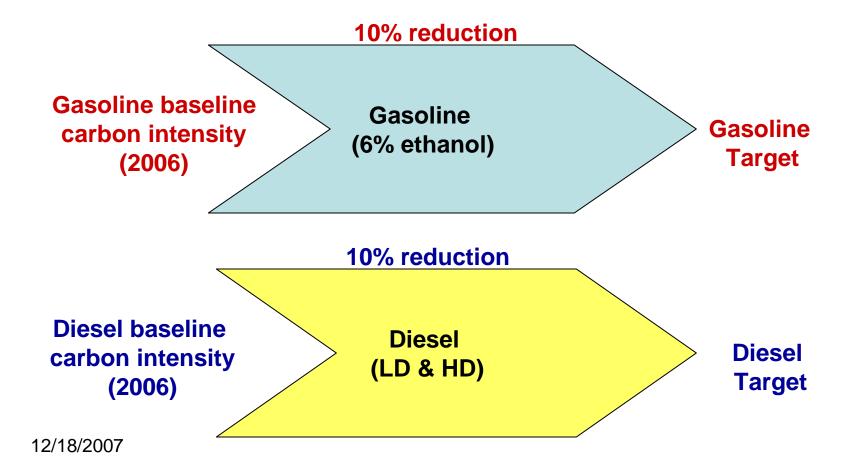
Scope of Standard	Apply to gasoline, diesel, natural gas, propane, electricity; hydrogen under evaluation; exclude aviation and bunker fuel	
Diesel Fuel and Drivetrain Efficiency Adjustment Factor	Fuel carbon intensities include vehicle efficiency adjustment factors	
Upstream Emission: Crude Oil	Using a fixed, average value for conventional crude oil; non-conventional heavy crudes (tar sand, oil shale, coal to liquid, gas to liquid, other heavy oils) treated separately	
Baseline	Use 2006 data	

Agenda

Discussion of policy issues

- 1. Targets
- 2. Banking and trading of credit
- 3. Point of regulation
- 4. Compliance and penalties
 - a. Compliance paths
 - b. Penalty
 - c. Tracking/certification/auditing
- 5. Land use change
- Default values
- 7. Co-products
- 8. Sustainability
- 9. Uncertainty in LCA
- 10. System boundaries
- Stakeholder presentations
- Future meeting dates

1. Targets


1. Targets: Options Considered in UC Report

- Option 1 (UC Recommendation): Providers of transportation fuels regulated by or participating in LCFS should be held to the same standard, which is the target value for all transportation fuels, 83 CO₂e/MJ in 2020
- Option 2: Obtain 10% reduction from current average performance for each fuel
- Option 3 (UC Recommendation): Use gasoline sales as compliance tool, with diesel opt-in; increase gasoline target carbon intensity reduction to 12.4%; diesel and other petroleum fuel have no target

1. Targets: Staff Recommendation

Separate compliance targets for gasoline and diesel with 10% reduction each

2. Banking and Trading of Credits

2. Banking and Trading of Credits

UC Recommendation:

- LCFS credits not allowed for AB32 compliance
- Borrowing of credits not allowed
- Regulators serve as record keepers only; buyers and seller do not communicate price of allowance to the regulators
- Allow voluntary emissions reductions by retiring the credit

Staff Recommendation:

- Export LCFS credit to AB32 but not allow for import
- Credits do not have expiration date up to 2020
- Credits can be traded between transportation fuels
- Borrowing of credits under discussion
- Credits denominated in mass units ton CO₂eq

3. Point of Regulation

3. Point of Regulation: Staff Recommendation

	Liquid Fuels	Electricity	Hydrogen and natural gas
Regulated entities	Refiners, blenders, and importers	Providers of transportation electricity	(Under discussion)
Point of regulation	Point at which finished gasoline or diesel is first manufactured or imported	(Fuel quantification needed) Issues to consider: -Dedicated meters for charging BEVs and PHEVs -Availability of metering technology -Analytical estimates	(Fuel quantification needed)

10

4. Compliance paths, penalty, auditing/certification

4a. Compliance Paths

Option 1 (UC Recommendation): Technology Forcing

- Volumetric requirements for fuels with specified low-GHG performance before 2010
- Carbon intensity reduction in the last few years of the LCFS

Option 2 (UC Recommendation): Accelerating

- Small changes in carbon intensity required in the beginning years
- Reductions accelerate in the later years to meet the 10 % target in 2020

Option 3: Linear

- Absolute reductions in AFCI values to reach target
- Annual decrease of 0.84 gCO2e/MJ or 0.91% to 1.00% annually over the compliance period

Option 4: Rationalized

- Assumes that sufficient rationalization is feasible for the first year
- Effect is limited to one year and no additional credits are created by rationalization
- Once this effect is accounted for, a simple linear decrease in AFCI is imposed each year

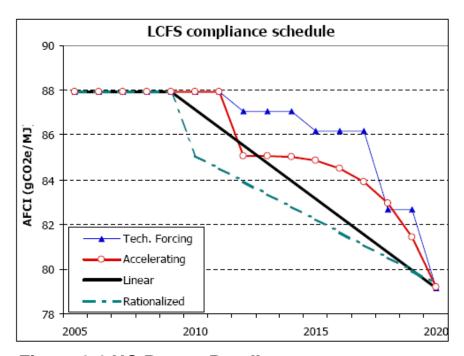


Figure 3.1 UC Report Part II

UC Recommendation: A compliance path that does not require significant near-term carbon intensity reductions

4b. Penalty

UC Recommendation:

- Obligated parties have the option to comply by paying a fee, not a fine for non-compliance
 - GHG content above the standard entails payment of a fee proportional to the excess content and fuel volume
 - Regulations should provide severe administrative penalties for misreporting – example: \$100/gal of fuel misreported

Staff Recommendation:

- Compliance through fee payment not allowed
- Penalties described in the Health and Safety Code 38580 pursuant to Division 25.5, CA Global Warming Solution Act of 2006

http://www.leginfo.ca.gov/cgi-bin/displaycode?section=hsc&group=38001-39000&file=38580

4c. Tracking/Certification/Auditing: USEPA RIN

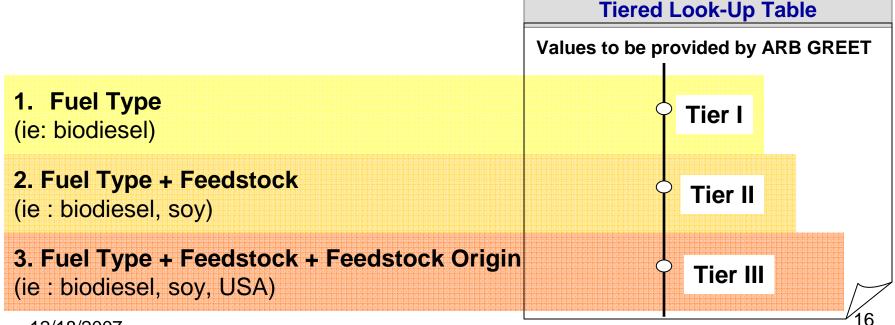
Overview

- RIN is a 38-digit Renewable Identification Number
- Unique RIN assigned to all renewable fuel produced or imported into the U.S.
- Obligated parties demonstrate compliance by accumulating sufficient RINs
- RINs can be banked or traded to another party

UC and staff analysis suggest RIN not applicable for LCFS

- GWI information not tracked
- Cellulosic ethanol identifier and equivalency factor serve little value for LCFS
- Any party can transfer fuel without assigned RIN or with a different assigned RIN
- RIN is designed to accommodate liquid fuels LCFS must track all fuels, including electricity, LPG, CNG, and hydrogen

4c. Tracking/Certification/Auditing: Staff Recommendation


- Only consider assigned RINs
- Original RIN recorded on Product Transfer Document
- Option1: Modify RIN by adding 6 more digits

Option 2: Add fuel type, feedstock, and feedstock origin in PTD

4c. Tracking/Certification/Auditing: Staff Recommendation

- Reporting system similar to UK RTFO but based on ARB WTW lifecycle analysis
- Reports based on the records of RIN transactions
- Reported submitted annually
- Tiered look-up table used for default values

5. Land Use Change

5. Land Use Change: Definitions

Direct land use change

- Biofuel crops grown on land that was previously used differently
 - Example 1: Forest converted to cropland
 - Example2: Permanent grassland to cropland

Indirect land use change

- Land use for biofuels increase pressure on land use change worldwide
 - Example 1: Corn growth on historical soybean land in the U.S. causes previously uncropped land in the Amazon to be converted for soybean production
 - Example2: Palm oil used in biofuel causes increase in demand of production of of palm oil for food. As a result of the market demand, native forest is converted into land for palm oil production

5. LUC: UC Recommendation

- Develop a non-zero estimate of the global warming impact of direct and indirect land use change for crop-based biofuels and use this value for several years of LCFS implementation
- Participate in development of internationally accepted methodology for accounting for land use change
- While values should be specific to CA, calculations methods should be internationally accepted
- LCFS could include a rough estimate of emissions from global land use conversion from crop-derived biofuel (not doing so is same as assigning zero)

5. LUC: Staff Recommendation

- Include both direct and indirect LUC
- Evaluate impact of direct and indirect land use change:
 - Change of land from current to biofuel crop
 - Change from permanent grassland to crop growing
 - Change from forest to crop growing
 - Drainage of land for agriculture
- Current Issues:
 - Indirect/direct land use values
 - Determine methodology for assigning default values
 - Determine amortization time period:
 10, 20, 30, or 100 years

Direct effect of LUC for ethanol

- Results vary strongly by chosen amortization period (20, 30, 100 year)
- Carbon emissions estimates also vary by a factor of 2
- Direct effects provide an approximate upper bound on indirect effects

Tropical forest to sugarcane (g/MJ)					
	20-yr	30-yr	100-yr		
low	230	150	50		
medium	290	190	60		
high	440	300	88		

Tropical Forest to corn (g/MJ)					
	20-yr	30-yr	100-yr		
low	420	280	80		
medium	540	360	110		
high	830	550	170		

Sample. For illustration purposes only.

6. Default Values

6. Default Values: UC Recommendations

- Use approach similar to UK RFTO for biofuels
- Pessimistic default values determined for each input and processes
 - Any set of higher GWI fuels with cumulative volume less than 5% of total exclude from consideration as default
- Fuel providers can elect to opt-in or use default
- For crop-based feedstock, use regional per-crop average GWI
- GWI values needed for all co-products
- Current market conditions need to be considered in accounting framework

6. Default Values: Staff Recommendation

- Evaluation of similar efforts:
 - UK RFTO tiered approach with values from IPCC; provides regulated parties opportunity to replace default with actual data
 - USEPA may provide starting estimates for ARB lifecycle analysis
- How to define default values
 - Average values
 - Worst case scenarios
 - Conservative values
- What are the criteria of assigning default values
 - If value not available, consider empirical estimates
 - If higher carbon intensity fuels have cumulative volume less than 5%, should fuel be considered in default value calculations
- How to determine and include sustainability information

7. Co-Products

7. Co-Products

Basic Definition:

- A useful product which is produced as part of the process of producing fuel from a feedstock. Its value is usually dictated by a market for this 'useful product'
- Example 1: DDGS from ethanol production
- Example2: Glycerin from biodiesel production

7. Co-Products

UC Recommendation:

- GWI values would be needed for all co-products
- Accounting system would need to define standard GWI values for coproducts
- Accounting framework must take into account current market conditions for these co-products and should be updated to account for changing market

Staff Recommendation:

- Consider substitution/displacement method used for biofuels
- Consider allocation method for petroleum-based fuels
- Identify and develop values for co-products:
 - Animal feed (DDGS, soybean meal), electricity, glycerin, refinery products from gasoline and diesel production that provide credits in the near term
- Consider updates to co-product values made every 3-4 years based on market assessment

8. Sustainability

8. Sustainability: UC Recommendation

- Fuel providers should be required to report on the sustainability of impact of fuels, especially biofuels
- Keep LCFS simple as possible in the early years no additional regulatory requirements on sustainability issues unrelated to transportation
- Reporting should include impact of biofuel production in CA, as well as impact through the US and globally
- Global scale assessment of sustainability is recommended since global market for biofuel will be affected by increase consumption in CA
- ARB's should pay close attention to international efforts on sustainability – important for LCFS to be compatible with international efforts

8. Sustainability: Staff Recommendation

- Issues under consideration:
 - Land erosion
 - Pesticide and fertilizer run-off leading to eutrophication (starving lakes and water bodies of oxygen) and toxic impact on human and animal health
 - Biodiversity
 - Water use due to larger demand for biodfuel production
 - Water pollution resulting from crop growing and and fuel production
 - Displacement of indigenous people from land
 - Environmental justice
 - Labor law violations, particularly in other countries
- Investigate developing qualitative criteria rather than quantitative for 2008-2010; additional refinement in 2010-2020
- Currently working with UCB/UCD to evaluate the issues
- Review USEPA draft regulation for initial direction

9. Uncertainty

9. Uncertainty

- Types of uncertainty
 - Market uncertainty
 - Input value uncertainty
- Impact of uncertainty
 - Magnitude of the impact to the LCA pathway

9. Uncertainty

UC Recommendation:

- Do not ignore parameters that are uncertain or difficult to measure – doing so is assigning a value of zero
- ARB should use the simplest model possible and establish clear criteria for updating the parameters

Staff Recommendation:

- Perform sensitivity analysis of "large impact" components of a given pathway and estimate impact
- Clearly outline the approach used to calculate a 'value' or a 'range of values'
- USEPA LCFS process may provide starting point
- UCB and UCD create research papers on uncertainty and the impacts

32

10. System Boundaries

10. System Boundaries

UC Recommendation:

 LCFS must develop best estimates based on simpler approaches or choose a limited system boundary and acknowledge that leakage will occur outside of that system boundary

Staff Recommendation:

- Develop methods to clearly define system boundaries for all fuels being considered for LCFS for 2010 timeframe
- Consider co-product displacement boundaries and provide for boundary expansion to include co-product pathways
- Investigate co-product expansion limit

Tentative Future Meetings

Tentative future meeting dates:

- January 18, 2008 (Friday)
- February 21, 2008 (Thursday)

Proposed future meeting topics:

- Remaining items not addressed today
- Interaction with AB32, AB1493 and other policy instruments
- Upstream emission: refineries
- Carbon capture and storage
- Environmental justice
- Cost analysis
- Research needs
- Additional topics brought up in WG meetings/workshops

Thank You

Christina Zhang-Tillman

Phone: (916) 324-0340

Email: czhangti@arb.ca.gov

Visit our website at:

http://www.arb.ca.gov/fuels/lcfs/lcfs.htm