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Abstract One of the major objectives of the current
expansion in bioenergy cropping is to reduce global
greenhouse gas emissions for environmental benefit. The
cultivation of bioenergy and biofuel crops also affects
biodiversity more directly, both positively and negatively.
Ecological impact assessment methods for bioenergy
projects (including changes to policy and land use) should
address not simply changes to species abundance at field
level, but include larger scale issues, including changes to
landscape diversity, potential impacts to primary and
secondary habitats and potential impacts on climate change.
Such assessments require a correspondingly broad range of
scientific methods, including modelling of climate and land
use as well as the observation of biodiversity and landscape
indicators. It is also possible to adopt evidence-based
guidelines for good practice for situations where compre-
hensive assessments are not available. These might include
favouring projects and policies that avoid gene flow to wild
relatives of crops in centres of diversity, that do not result in
invasion by the crop into other habitats, that enhance field-
scale biodiversity, that increase landscape diversity, that do
not threaten valued habitats within the local landscape, that
promote the sustainable management of biodiverse habitats,
that do not increase the risk of loss of primary habitats and
that result in a proportionately large reduction in green-
house gas emissions.
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Introduction

One of the factors driving the current interest in bioenergy
cropping is the potential environmental benefit through the
reduction in greenhouse gas emissions [57]. However, any
major changes in land use have the potential to impact other
aspects of the environment. It is clear that intensive
agriculture and forestry have undermined the delivery of
ecosystem services in many parts of the world as a result of
impacts on biodiversity [43]. It is also clear that biodiver-
sity is also under threat from global environmental change
[63]. Bioenergy cropping therefore has the potential to
benefit biodiversity by mitigating against climate change.
However, it is important to consider the potential impacts
on biodiversity as a result of changes in land use and
management [38]. The purpose of this paper is to consider
the issues that need to be addressed when assessing the
impacts of bioenergy crops on biodiversity, and the
methodologies that are available. The paper also considers
potential guidelines for good practice for bioenergy
cropping in the absence of a complete assessment.

For an ecological impact assessment, the processes that
relate the proposed changes to effects on biodiversity need
to be each understood as a function of some form of hazard
or potential benefit and the probability of its occurrence.
The hazard or benefit arises from a change in a pressure
(using terminology from the OECD driver–pressure–state–
impact–response model for managing environmental
change [44]) that directly impacts one or more components
of the environment. Such impacts are observed through
changes to measurable indicators.

An important precedent for assessing potential impacts
of new cropping patterns on biodiversity is the process of
environmental risk assessment of genetically modified
(GM) crops. Early risk assessments considered the potential
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for environmental harm arising from the crop plants
themselves. The introduction of the new varieties consti-
tuted the pressure that could cause ecological impacts by
being toxic to non-target organisms and by affecting the
gene pools of wild relatives. While these potential hazards
could be explored in the laboratory, the probability of the
hazard materializing required field work of considerable
scale [56, 71]. These assessments did not address the
indirect effects arising from how the crop plants are
managed, notably the pressures of new combinations of
pesticides and herbicides associated with the crops and their
impacts on arable plants, invertebrates and birds [39]. New
experiments were devised to estimate these effects through
comparison of biodiversity indicators for GM and non-GM
cropping systems [18]. While it proved possible to establish
the extent of differences between these two systems at field
level [5, 17, 29, 31], these differences were not constant;
they could be mitigated by changes to crop management
[11] and were sensitive to the scale of cropping at the
landscape level [15]. Moreover, because the differences
observed between GM and non-GM cropping were smaller
than those found between crop species [5, 17, 29, 31], it
was not clear that the effects of GM cropping were any
greater than those involved with other changes in agricul-
tural land management [15].

There are important aspects of the design of risk
assessments of GM crops that are inappropriate for those
of most introductions of bioenergy crops. The risk assess-
ments assumed that GM crops might replace conventional
varieties of the same species, rather than change cropping
patterns substantially. This assumption might have been
reasonable for the case of GM crops, and may be valid for
varieties of existing arable crops being planted for biofuel.
But it does not hold for plantings of bioenergy crops such
as willow (Salix spp.), poplar (Populus spp.) and Mis-
canthus (Miscanthus spp.), especially if they replace very
different land covers such as grassland or annual row crops.
Ecological risk assessments of GM crops are triggered by
how the crop has been bred, rather than how it will be used,
while for bioenergy crops the effects of cultivation
practices, choice of areas and crop species are likely to
have bigger environmental impacts than the methods of
plant breeding [15]. Risk assessments for GM crops in
Europe adopt the position that effects on biodiversity
should be no less than the comparable conventional crop
[14], but this position is more complex to evaluate for
bioenergy crops as they are expected to have a broader
environmental benefit as well as local impacts.

A broader understanding is required that addresses
potential impacts on biodiversity of bioenergy (and, by
implication, biorefinery) projects that impact on land use
and land management. These projects might be new
varieties, new policies or new commercial opportunities.

They could be at a very local scale, such as a proposal to
plan bioenergy crops near a nature reserve, or to manage a
local forest for harvesting biomass. They could be
technological, for example the development of genetically
modified varieties of bioenergy crop plants, or they could
be policy related, whether aimed at national energy security
or the global control of greenhouse gas emissions. A
framework is needed that addresses potential positive and
negative impacts on different taxa at differing spatial and
temporal scales, recognising that there might be acceptable
trade-offs between localised risks and benefits to biodiver-
sity compared to larger scale, longer-term impacts. It is
helpful to separate impacts at the global, regional, land-
scape and crop scale, not because they are independent
[19], but at least this distinction helps isolate particular
processes and how they might be assessed.

This paper discusses the ecological impacts that should
be considered when constructing risk assessments for
bioenergy projects that involve changes in land use and
management, noting the key questions to be addressed and
the methodologies available.

Field Scale

Pressures

The lowest level change at field level in a bioenergy project
is that the use of the crop is changed, but not the crop itself,
e.g. using grass for bioenergy production instead of grazing
[66]. The next level is that of swapping varieties of the same
species, as may happen with arable biofuel crops and tree
plantations. It is also likely that the new varieties will involve
different levels of fertiliser and pesticide inputs, analogous to
changes in pesticide regimes associated with GM crops.

It is also likely that the crop species itself is changed.
This can be more than swapping one arable species to
another, and may involve substantial changes to the growth
form, phenology and disturbance regime, as happens by the
replacement of grassland, conservation reserve or annual
row crops with biomass crops.

Impacts

The impacts on biodiversity at the field level include the
potential for gene transfer to wild relatives. This potential is
considered an important risk to biodiversity should the new
crop be genetically modified [37, 49], and especially if the
crops are located in an area of genetic diversity [15]. There
is the potential for direct effects on those taxa that reply on
the crop plant, directly or indirectly.

A simple switch between varieties of the same species
can influence the species in and around the crop [12],
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especially if the switch is also associated with changes to
crop management [15]. The effects tend to be of a similar
order to other changes in agricultural practice [15].

Changes to the gross growth form and phenology of the
crop are likely to result in much greater effects on more
species. Their cultivation is likely to eliminate niches for
some species, but open up other niches for others; not
simply modifying the existing ecology, but introducing a
new suite of species. This would happen, for example,
when grassland is transformed into forestry. The issue then
is not simply the loss of the grassland habitat and the
biodiversity associated with it, but also the gain of a new
forest habitat, and its potential quality compared with other
secondary woodlands.

The key questions to be asked as part of an assessment
are, therefore,

& What is the potential for gene flow to wild relatives?
& If the new crop does not involve a major change in

growth form from existing land use, what is the
potential for direct and indirect impacts on the species
associated with it?

& If the new crop involves a major change in growth
form, what is the potential biodiversity compared to (a)
the existing land use and (b) existing habitats of similar
structure to the new crop?

Methodologies

The methods used to answer these questions all involve the
choice of indicators, selected by considering the process by
which the pressure may have an effect. While methods of
assessing gene flow are well established, the question of
how much gene flow is acceptable in ecological terms is
more contentious [3, 49]. Likewise, methods of establishing
both hazard of toxicity effects on non-target organisms and
the likelihood of such hazards being realised are well
understood [56].

The UK Farm Scale Evaluations of GM crops estab-
lished a robust method for assessing risks to biodiversity
resulting from changing one cropping system to another
[18]. It involved establishing a set of indicator species that
were monitored in a randomised block experiment in which
the two treatments corresponded to GM and non GM
cropping systems of the same crop species—i.e. GM maize
was compared with conventional maize. The experiment
was designed to test the null hypothesis of no difference
between indicator levels between treatments [46]. The
observed effects were extrapolated to longer time scales
[30] and to other taxa [23].

This null hypothesis is appropriate for designing experi-
ments when the differences between the two systems are
small, but is not appropriate when the change involves the

transformation of habitats. This is because most biodiver-
sity indicators will be associated with one or the other
habitat (e.g. grassland vs forest). Moreover, the species
composition during the early years of such a transformation
may not reflect that to be found once the habitats are
mature. A more appropriate approach would be to consider
the ecological quality of the present and proposed land uses
compared with similar habitats. Thus the loss of a species-
poor, intensive grassland would be more acceptable than
that of a species-rich meadow, especially if the new habitat
is to be managed in ways that enhance its biodiversity
potential. The quality of existing habitats can be tested on
the ground [58] or using existing conservation databases
and designations. While the potential for biodiversity of
new habitats is best determined on the basis of experimental
evidence, models are appearing that forecast the potential
species occupancy on the basis of the niches that will
become available [9, 48].

Landscape Scale

Pressure

Transitions between annual crops, grazing land, biomass
grasses, coppice and forest involve the creation and
destruction of habitats. The implications of such changes
are not simply restricted to the land parcels themselves, but
to the biodiversity of the whole landscape. This is due to
the importance on the spatial structure and turnover of
habitats within a landscape to many species [19].

The first pressure is that of changing the use of different
parcels of land. The issues involved from changing from
one crop type to another are noted above, but it is also
possible that land is brought into cropping from other uses,
including semi-natural or even primary habitats. Such
changes will affect the diversity of land use within a
landscape, making it more uniform in the case of large scale
plantings or more diverse in the case of small parcels of
biomass crops. A second pressure is to change the structure
of the landscape itself, for example by dividing or
aggregating existing land parcels into smaller or larger
units, and by creating or destroying non-cropped features in
the landscape such as hedgerows or buffer areas. Bioenergy
cropping may impose a third pressure, by changing the rate
of turnover of habitats, for example as new rotations are
introduced to coppice or arable cropping.

Impacts

The biodiversity of a landscape is closely related to the quality
of individual habitats, the diversity of habitats, their turnover
and the spatial relationships among them. In agricultural
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landscapes, habitat quality is often a function of the history of
land management, with the most biodiverse habitats being
those that have had continuity of less intensive practices [35].
At the landscape scale, it is generally true that the greater the
diversity of habitats, the greater the diversity of species [4,
19], though habitats managed traditionally at large scales,
such as steppe, have their own assemblages of high
conservation value. This diversity is increased when the
spatial structure of the landscape facilitates dispersal of
organisms between habitat patches [28], which is why the
biodiversity of farming systems is dependent upon the
landscape character as well as on the management of
the individual parcels of land [22, 34, 70].

A major negative potential impact on biodiversity is the
loss of a high-quality habitat, either by its replacement by a
bioenergy crop or by large changes in its management (e.g.
increased extraction of woodfuel from woodland). A
second negative impact would arise should the introduced
crop species prove invasive, especially likely in the cases of
grasses including giant reed (Arundo donax) and, poten-
tially, Miscanthus [50]. The risk of invasiveness needs to be
addressed when considering the location of the crops in the
landscape. For example, there are potential benefits in
planting bioenergy crops adjacent to high quality habitats,
so that they act as buffers for control of water quality and/or
microclimate. However, this would be inappropriate for the
giant reed, as it is known to invade riparian habitats [50].

The greatest potential benefit at the landscape scale is
from the creation of new habitats by planting bioenergy
crops, especially woodland and short rotation coppice.
While the new crop will gain a new suite of species, there
are time lags as the crops themselves grow and mature, and
as species immigrate into the new habitats or become
locally extinct. These time lags vary among species, and
depend on their presence in the vicinity [59], which in turns
depends upon the landscape structure and its past manage-
ment [59]. They may be surprisingly long. For example the
distribution of a carabid beetle in an agricultural landscape
in 1993 was actually better correlated with the distribution
of its hedgerow habitat in 1952 than the contemporary
pattern [47], while the plant species diversity in a Swedish
agricultural landscape is best explained by land use patterns
200 years ago [27].

Another potential impact is through the removal or
addition of linear habitat features and small areas of semi-
natural habitats, such as lines of trees, hedgerows, water-
edge and ponds, with consequent losses of habitat and
potential corridors for species dispersion [8, 13]. Again,
there is the potential to use bioenergy crops as buffer zones
to reduce soil losses or diffuse pollution into watercourses
[1], whilst creating habitat for some species.

While habitat turnover can reduce the abundance of
many species that have poor dispersal abilities, it is required

for the persistence of some early-succession plant and
animal assemblages. This is particularly true for the forest
floor flora that became associated with woodland coppice
in north-west Europe. Willow and poplar coppice for
bioenergy can be beneficial for these species, but only if
the new rotations are in phase with the dispersal, life cycle
and dormancy patterns of the species involved [10].

The key questions to be asked as part of an assessment
are, therefore,

& Does the proposal threaten, or buffer, existing high
quality habitats in the landscape?

& Does the proposal affect landscape diversity, structure
and turnover?

& Is the crop likely to prove invasive in its new
environment?

& Is there potential for species losses or gains through
landscape modification?

Methodology

Any change at the landscape will affect some species
positively, and others negatively. It is therefore important to
identify the priorities for biodiversity conservation, and
how their needs may be met should the landscape change.
These priorities are likely to focus on either individual
species or habitats, or a more generalised desire to increase
diversity. The issue of individual species or habitats arises
when their presence in the landscape is already known,
their conservation importance already established, and any
management criteria understood. Potential proposals should
be challenged against these criteria, and methods sought
that improve the viability of the species of habitats by, for
example, acting as buffer zones for microclimate or water
quality control, or by creating potential networks for
species dispersal.

The ideal methodologies for assessing potential impacts
of new developments for a broader range of taxa involve
the use of baseline data on both landscape and biodiversity,
as well as the means for assessing the potential impacts of
changing the landscape. There are many approaches to
landscape and biodiversity inventory and monitoring [16,
25, 36, 51]: in general, landscapes can be monitored using
remote sensing, but species assessments need to be made on
the ground. Models are becoming available to help forecast
impacts of changes on higher plants, invertebrates, birds
and mammals. It is possible to evaluate the viability of
landscapes for multiple taxa according to the area and
configuration of habitats they require [6, 62]; it is also
possible to model the biodiversity of a potential landscape
through the niches that are available to different species [9]
or by using agent-based simulations of the dynamics of
different species in a landscape [67]. These are all promising
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techniques, but some are data intensive and none have been
validated for bioenergy cropping. Fortunately, the general
principles of what makes a biodiverse agricultural or forest
landscape are well understood, and evidence-based strategies
for managing landscape change are available [20]. These
include maintaining large patches of native/uncropped
vegetation with corridors and stepping stones between them,
and buffers around them; maintaining appropriate distur-
bance regimes, maintaining species of particular concern and
key species interactions, and controlling aggressive and
invasive species [21].

Regional Scale

One of the concerns about changes to bioenergy policy is
the potential to disrupt distant ecosystems by driving
production elsewhere at the expense of primary forests
and the species within them [45]. Bioenergy cropping is
already competing with food production [7], and will in
turn influencing global patterns of agriculture and pressures
on biodiversity [65]. There may be changes to the intensity
of land management. While these may have negative
impacts locally on biodiversity at the landscape scale, they
may be offset by reducing pressure on further habitat loss
[26]; but see [40].

Impacts

The major potential negative impact of bioenergy policies
and large scale programmes is that they will have the effect
of increasing pressure on the degradation and loss of more
remote habitats and landscapes. Yet this need not happen,
especially if they are designed to use land that is no longer
biodiverse, but is marginal, recently abandoned or degrad-
ed. Indeed, there is the potential for large scale land
restoration using bioenergy crops.

The key questions to be asked as part of an assessment
are, therefore,

& What is the risk of loss of primary habitat, direct or
indirect?

& What is the risk of loss of secondary (non-agricultural)
habitat, and potential consequences of that loss?

& Will new habitats be created, and what might be the
local and regional benefits to biodiversity?

Methodology

Analysis at this scale is perhaps most appropriate for the
analyses of policy changes. Formal methods involve model-
ling land use change in response to different economic/policy
scenarios, often by allocating pixels of land to different uses.

Such scenarios can have a short-term focus [68] or can be
more forward looking and sensitive to higher-order political
processes [43, 52]. They are useful for showing broad
patterns of potential land use change, rather than for
identifying particular threats to particular habitats.

Global Scale

At the global scale, the major impact of bioenergy
programmes is to reduce net greenhouse gas emissions, with
consequently better control of global climate change and
benefits to biodiversity [42, 61, 63]. Therefore the potential
global benefits depend upon a whole life cycle assessment of
carbon balance and implications for other greenhouse gases,
and how they differ between crop type, production and
distribution systems. The key question is, therefore,

& To what extent will the project reduce the net
production of greenhouse gases, and what impact will
this reduction have on scenarios for future climate
change?

Bioenergy projects are being evaluated for their potential
to mitigate climate change at a range of scales [2, 24, 32]. It
is beyond the scope of this paper to explore the issues
involved in estimating the potential impact of new develop-
ments on greenhouse gas emissions and hence on climate-
related risks to biodiversity, but it is worth noting the large
uncertainties involved, not least in terms of specifying the
system to be included. It is also worth noting that the global
emissions of greenhouse gases from the loss of natural
forests exceeds that of the transport sector, and that curbing
deforestation is a “highly cost-effective way to reduce
emissions” [61], implying that direct and indirect effects of
bioenergy projects on rates of habitat loss need to be taken
into account in greenhouse gas budgeting. The potential
release of carbon from soils disturbed for the planting of
bioenergy crops also needs to be considered.

Towards Good Ecological Practice for Bioenergy
Projects

The ecological implications of any bioenergy development
are indeed complex. This is because the impacts vary
between scales, in that the conversion of large areas of land
to monocultures of bioenergy crops may have locally
damaging consequences, but could contribute to the global
reduction of greenhouse gas production. The impacts vary
among taxa, so, for example, the conversion of grassland to
woodland coppice would favour species associated with
open woodland habitats at the expense of those that favour
more open habitats. There are substantial uncertainties in
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these potential impacts, and strong dependencies on the
management of the bioenergy projects across their whole
life cycle. And, finally, there are other goals for bioenergy
production than the conservation of biodiversity, including
energy security and rural development.

A complete assessment therefore involves the balancing
of goals across a wide variety of stakeholders, to an even
greater extent than has been the case for GM crops. Some
of the engagement processes used in the GM crop debate
[33, 53] offer useful models, but many others are available
[69, 72]. Clearly, complete assessments will prove complex
and time consuming. Given that these will be most needed
when there are clear conflicts of interest to be resolved, it is
better to avoid these conflicts in the first place. This can be
done by adopting simple guidelines, drawing upon the
existing rich evidence base of interactions between land use
and biodiversity. Projects could be favoured that:

& Avoid gene flow to wild relatives in centres of diversity
The greatest ecological risk of gene flow from crops to

wild relatives is that it may reduce the genetic diversity at
centres of origin and diversity [15].
& Do not result in invasion by the crop into other habitats

The risk of invasiveness results from a combination of
the characteristics of the plant itself, that can be increased
or decreased a result of breeding programmes [50], and of
its receiving environment.
& Are biodiversity in their own right

Many biomass cropping programmes can be developed
using local varieties of a wide range of species, and so
maintaining genetic diversity. It may prove viable to create
and manage biodiverse grasslands and woodlands for
bioenergy [66].
& Enhance field-scale biodiversity compared with local

habitats of equivalent growth forms, taking establish-
ment time into account
It is possible to create habitats and food resources for

biodiversity within bioenergy crops. Arable crops can be
managed with areas in and around them to provide habitats
and food [41, 60, 64], while perennial crops can be
managed with varieties, rotations and planting densities
that create niches for ground flora and fauna and nesting
birds [12, 54, 55].
& Increase landscape diversity

In the majority of agricultural landscapes, increasing the
diversity of land cover types and the levels of connecting
features increases biodiversity through availability of
multiple habitats and the facilitation of dispersion among
them [20].
& Do not threaten valued habitats and species within the

local landscape
Conservation concerns are often focused on individual

species or habitats at the landscape scale. New projects

should not replace these habitats, nor threaten them
indirectly (e.g. by changing the local hydrology).
& Promote the sustainable management of biodiverse

habitats
It may prove possible to manage some habitats for

biomass removal, increasing their long term economic
value and hence sustainability, or to use bioenergy crops
to provide buffers around existing nature reserves.
& Do not increase risk of loss of primary habitats

This risk is most relevant to changes in policies and
trading regimes, and includes indirect risks, such as through
changes to food markets.
& Result in a proportionately large reduction in green-

house gas emissions
A whole life cycle approach is needed that takes into

account not simply the carbon balance for the crop itself but
also potential carbon losses due to land clearance and soil
disturbance.

In general, the best way to integrate bioenergy require-
ments with the conservation of biodiversity is to minimise
the conflicts over land use. This will prove easiest for
bioenergy projects that take advantage of land that has been
used for agriculture, but is currently degraded or recently
abandoned. Such land is unlikely to be rich in biodiversity,
and its conversion is unlikely to increase pressure for
habitat loss elsewhere.
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