

Sustainable Biofuels: Environmental Considerations

Uwe R. Fritsche

Coordinator, Energy & Climate Division Öko-Institut (Institute for Applied Ecology), Darmstadt Office

presented at the BMELV/gtz/WWI International Conference

"Biofuels for Transportation – Global Potential and Implications for Sustainable Agriculture, Energy, and Security in the 21st Century"

Washington DC, June 7, 2006

- Current and future energy and emission balances of biofuel production
- GHG abatement costs of biofuels: contribution to climate protection?
- How to secure sustainable biofuel production?

Biomass Flows

Energy Balance

Fossil Energy Balance of Transport Fuels, data from WWI/gtz (2006)

Data given as ratio of energy output per fossil energy input

Source: based on IEA (2005)

GHG Reduction Costs

Sustainable Biomass

Note:

Ranges were developed using highest cost/ lowest GHG reduction estimate, and lowest cost/ highest GHG reduction estimate for each option, then taking the 25% and 75% percentile of this range to represent the low and high estimates in this figure.

Biofuels in Comparison

		costs 2010	2020	jobs	CO ₂ -eq.	SO ₂ -eq.
person transport		€cent/kWh _{input}		pers./TWh _{input}	g/kWh _{input}	
DIESEL-CAR	fossil diesel with tax	12,0	14,0	9	326	0,5
	dito, without tax	5,4	6,3	9	320	0,5
	biodiesel DE	7,7	8,2	314	65	1,0
	biodiesel from palmoil	5,6	6,0	-	275	1,0
	BtL wood-residue DE	6,9	5,3	153	-131	0,6
	BtL wood-SRF DE	8,8	7,7	1757	-100	0,8
	BtL wood-SRF from PL	4,1	5,2	-	-222	-0,6
OTTO-CAR	fossil gasoline, with tax	15,0	17,0	91	343	0,5
	dito, without tax	6,8	7,7			
	EtOH wheat DE	7,2	7,8	217	197	0,7
	EtOH lignocellulosic DE	6,5	6,1	83	79	0,5
	EtOH wheat from PL	3,3	3,4	-	219	0,8
	EtOH sugarcane from BR	3,4	3,4	-	108	1,0
	Biogas (maize)	6,9	6,7	220	87	0,6
	Biogas (double-cropping)	6,0	5,0	1.870	89	0,5

Source: Öko-Institut (2006); preliminary data for palmoil, and lignocellusose EtOH (whole plant)

Biofuels **excluding** taxes; but **including credits** for by-products (glycerine; electricity...)

Basic considerations:

- consider land for organic farming (e.g. 30% in 2030)
- set-aside farmland for nature conservation (e.g. 5% "stepping-stones" for species)
- no forests or grasslands for biocrops (soil carbon)
- no forest residues from critical sites
- straw use only if soil is protected

Which Energy Crops?

Approach

- Differentiate between "climatic" zones
- Determine the environmental impact of bioenergy crops
- Introduce mix of bioenergy crops (maintain crop and landscape diversity)

- erosion
- soil compaction
- nutrient + pesticide inputs to surface/ground water, and soils
- water abstraction
- fire risk
- diversity of crop types

Core Findings

- bio wastes are robust options
- for nature conservation + biodiversity, perennials often better than annual crops
- high net yield of whole-plant conversion (SRC + perennials) → lower impacts
- promising biofuels: lignocellulose EtOH + BtL, perennial oil plants; biogas?

- Bioenergy needs cross-sectoral land-use policy (agriculture, forestry, tourism, nature protection...)
- Im/exports interesting as addition:
 - → international sustainability standards!
- Research in sustainable cropping systems
- Biofuels only part of sustainable transport